skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Yanming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A multistage variable selection method is introduced for detecting association signals in structured brain‐wide and genome‐wide association studies (brain‐GWAS). Compared to conventional methods that link one voxel to one single nucleotide polymorphism (SNP), our approach is more efficient and powerful in selecting the important signals by integrating anatomic and gene grouping structures in the brain and the genome, respectively. It avoids resorting to a large number of multiple comparisons while effectively controlling the false discoveries. Validity of the proposed approach is demonstrated by both theoretical investigation and numerical simulations. We apply our proposed method to a brain‐GWAS using Alzheimer's Disease Neuroimaging Initiative positron emission tomography (ADNI PET) imaging and genomic data. We confirm previously reported association signals and also uncover several novel SNPs and genes that are either associated with brain glucose metabolism or have their association significantly modified by Alzheimer's disease status. 
    more » « less